関連論文


※上記の広告は60日以上更新のないWIKIに表示されています。更新することで広告が下部へ移動します。

関連論文を投稿してください。

その際簡単に内容を要約したものをつけてください。


研究論文

twitterの信頼性に関する研究。
信頼できる情報
RTが多い、フォロー数多、nagatibeニュアンス
信頼できない情報
URLなし、ツイート数少、positiveニュアンス

自作自演ミームの検出に関する研究
Truthyというシステムを構築し自作自演かどうかを検出
グラフ構造(Retweetのされ方)から判定

筑波大学で2011年に研究された内容。
信頼できる情報とデマ情報の違いを線形空間に表し、クラスタリングを用いて分類
使用した指標
Np
否定語数+肯定語数
1-En
1-RTエッジ数/RTノード
Rn
RT最大深さ/RTノード数

Retweet経路に関してapi1.1以降に模擬的に取得することを目的とした論文です。

twitterにおいてリツイートされた情報の信頼性ともともとのツイートをしたユーザーの情報を比較しデマ情報と正しい情報に関連させることを目的とした論文
  • フォロー数の人数構成比
  • フォロワー数の人数構成比
  • ツイート総数の人数構成比
  • 公式リツイートされた数の人数構成比
  • 公式リツイートした数の人数構成比
  • 非公式リツイートした数の人数構成比
  • URLつきリツイート数の人数構成比
等が関係していると推測した。

感染症の伝播モデルをもとにデマツイートおよびその訂正ツイートについて伝播モデルを構築。
SNSのデマ情報の拡散を防止するにはいちはやく訂正情報をながすこととし、できるだけはやく訂正情報を拡散させることを目的としている。

デマ情報のRTされやすい文章的特徴を仮説建て、検証。
デマは「行動を促す」「ネガティブな」「不安を煽る」内容が多く,また「行動を促す」「ネガティブな」「不安を煽る」ツイートは RT されやすいことがわかった